All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Identification of Interesting Objects in Large Spectral Surveys Using Highly Parallelized Machine Learning

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F17%3A00485674" target="_blank" >RIV/67985815:_____/17:00485674 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1017/S1743921317000047" target="_blank" >http://dx.doi.org/10.1017/S1743921317000047</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S1743921317000047" target="_blank" >10.1017/S1743921317000047</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Identification of Interesting Objects in Large Spectral Surveys Using Highly Parallelized Machine Learning

  • Original language description

    We present results of Spark-based semi-supervised machine learning of LAMOST spectra attempting to automatically identify the single and double-peak emission of H.alpha. line typical for Be and B[e] stars. The labelled sample was obtained from archive of 2m Perek telescope at Ondřejov observatory. A simple physical model of spectrograph resolution was used in domain adaptation to LAMOST training domain. The resulting list of candidates contains dozens of Be stars (some are likely yet unknown), but also a bunch of interesting objects resembling spectra of quasars and even blazars, as well as many instrumental artefacts. The verification of a nature of interesting candidates benefited considerably from cross-matching and visualisation in the Virtual Observatory environment.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/LD15113" target="_blank" >LD15113: Applications of Artificial Intelligence in Astronomy</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Astroinformatics

  • ISBN

    9781107169951

  • ISSN

    1743-9213

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    180-185

  • Publisher name

    Cambridge University Press

  • Place of publication

    Cambridge

  • Event location

    Sorrento

  • Event date

    Oct 19, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000456314100026