Identification of Interesting Objects in Large Spectral Surveys Using Highly Parallelized Machine Learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F17%3A00485674" target="_blank" >RIV/67985815:_____/17:00485674 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S1743921317000047" target="_blank" >http://dx.doi.org/10.1017/S1743921317000047</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1743921317000047" target="_blank" >10.1017/S1743921317000047</a>
Alternative languages
Result language
angličtina
Original language name
Identification of Interesting Objects in Large Spectral Surveys Using Highly Parallelized Machine Learning
Original language description
We present results of Spark-based semi-supervised machine learning of LAMOST spectra attempting to automatically identify the single and double-peak emission of H.alpha. line typical for Be and B[e] stars. The labelled sample was obtained from archive of 2m Perek telescope at Ondřejov observatory. A simple physical model of spectrograph resolution was used in domain adaptation to LAMOST training domain. The resulting list of candidates contains dozens of Be stars (some are likely yet unknown), but also a bunch of interesting objects resembling spectra of quasars and even blazars, as well as many instrumental artefacts. The verification of a nature of interesting candidates benefited considerably from cross-matching and visualisation in the Virtual Observatory environment.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/LD15113" target="_blank" >LD15113: Applications of Artificial Intelligence in Astronomy</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Astroinformatics
ISBN
9781107169951
ISSN
1743-9213
e-ISSN
—
Number of pages
6
Pages from-to
180-185
Publisher name
Cambridge University Press
Place of publication
Cambridge
Event location
Sorrento
Event date
Oct 19, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000456314100026