Active deep learning method for the discovery of objects of interest in large spectroscopic surveys
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00342863" target="_blank" >RIV/68407700:21240/20:00342863 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1051/0004-6361/201936090" target="_blank" >https://doi.org/10.1051/0004-6361/201936090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/201936090" target="_blank" >10.1051/0004-6361/201936090</a>
Alternative languages
Result language
angličtina
Original language name
Active deep learning method for the discovery of objects of interest in large spectroscopic surveys
Original language description
Context. Current archives of the LAMOST telescope contain millions of pipeline-processed spectra that have probably never been seen by human eyes. Most of the rare objects with interesting physical properties, however, can only be identified by visual analysis of their characteristic spectral features. A proper combination of interactive visualisation with modern machine learning techniques opens new ways to discover such objects. Aims. We apply active learning classification methods supported by deep convolutional neural networks to automatically identify complex emission-line shapes in multi-million spectra archives. Methods. We used the pool-based uncertainty sampling active learning method driven by a custom-designed deep convolutional neural network with 12 layers. The architecture of the network was inspired by VGGNet, AlexNet, and ZFNet, but it was adapted for operating on one-dimensional feature vectors. The unlabelled pool set is represented by 4.1 million spectra from the LAMOST data release 2 survey. The initial training of the network was performed on a labelled set of about 13 000 spectra obtained in the 400 Å wide region around Hα by the 2 m Perek telescope of the Ondˇrejov observatory, which mostly contains spectra of Be and related early-type stars. The differences between the Ondˇrejov intermediate-resolution and the LAMOST low-resolution spectrographs were compensated for by Gaussian blurring and wavelength conversion. Results. After several iterations, the network was able to successfully identify emission-line stars with an error smaller than 6.5%. Using the technology of the Virtual Observatory to visualise the results, we discovered 1 013 spectra of 948 new candidates of emission-line objects in addition to 664 spectra of 549 objects that are listed in SIMBAD and 2 644 spectra of 2 291 objects identified in an earlier paper of a Chinese group led by Wen Hou. The most interesting objects with unusual spectral properties are discussed in detail.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Volume of the periodical
643
Issue of the periodical within the volume
November
Country of publishing house
FR - FRANCE
Number of pages
14
Pages from-to
—
UT code for WoS article
000593933900001
EID of the result in the Scopus database
2-s2.0-85096117424