Active deep learning method for the discovery of objects of interest in large spectroscopic surveys
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F20%3A00537357" target="_blank" >RIV/67985815:_____/20:00537357 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1051/0004-6361/201936090" target="_blank" >https://doi.org/10.1051/0004-6361/201936090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/201936090" target="_blank" >10.1051/0004-6361/201936090</a>
Alternative languages
Result language
angličtina
Original language name
Active deep learning method for the discovery of objects of interest in large spectroscopic surveys
Original language description
After several iterations, the network was able to successfully identify emission-line stars with an error smaller than 6.5%. Using the technology of the Virtual Observatory to visualise the results, we discovered 1013 spectra of 948 new candidates of emission-line objects in addition to 664 spectra of 549 objects that are listed in SIMBAD and 2644 spectra of 2291 objects identified in an earlier paper of a Chinese group led by Wen Hou. The most interesting objects with unusual spectral properties are discussed in detail.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/LD15113" target="_blank" >LD15113: Applications of Artificial Intelligence in Astronomy</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
1432-0746
e-ISSN
—
Volume of the periodical
643
Issue of the periodical within the volume
November
Country of publishing house
FR - FRANCE
Number of pages
14
Pages from-to
A122
UT code for WoS article
000593933900001
EID of the result in the Scopus database
2-s2.0-85096117424