All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Onset of penumbra formation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985815%3A_____%2F24%3A00586943" target="_blank" >RIV/67985815:_____/24:00586943 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/24:10478916

  • Result on the web

    <a href="https://hdl.handle.net/11104/0354765" target="_blank" >https://hdl.handle.net/11104/0354765</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202348764" target="_blank" >10.1051/0004-6361/202348764</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Onset of penumbra formation

  • Original language description

    Context. Fully fledged penumbrae have been widely studied both observationally and theoretically. Yet the relatively fast process of penumbra formation has not been studied closely with high spatial resolution. Aims. We investigate the stages previous to and during the formation of penumbral filaments in a developing sunspot. Methods. We analysed Milne-Eddington inversions from spectro-polarimetric data of the leading sunspot of NOAA 11024 during the development of its penumbra. We focused on selected areas of this protospot in which segments of penumbra develop. Results. We find that few types of distinctive flow patterns develop at the protospot limb and centre sides previous to penumbra formation. The flow in the centre side is often characterised by a persistent (> 20 min) inflow-outflow pattern extending radially over 4 arcsec at the direct periphery of the protospot umbra. This inflow-outflow system often correlates with elongated granules, as seen in continuum intensity maps, and is also coupled with magnetic bipolar patches at its edges, as seen in magnetograms. The field is close to horizontal between the bipolar patches, which is indicative of its possible loop configuration. All of these aspects are analogous to observations of magnetic flux emergence. In the protospot limb side, however, we observed a mostly regular pattern associated with small granules located near the protospot intensity boundary. Locally, an inflow develops adjacent to an existing penumbral segment, and this inflow is correlated with a single bright penumbral filament that is brighter than filaments containing the Evershed flow. All investigated areas at the centre and limb side eventually develop penumbral filaments with an actual Evershed flow that starts at the umbral boundary and grows outwards radially as the penumbral filaments become longer in time.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GF23-07633K" target="_blank" >GF23-07633K: Unveiling the principles of solar magneto-convection</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy & Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Volume of the periodical

    686

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    9

  • Pages from-to

    A112

  • UT code for WoS article

    001237764300006

  • EID of the result in the Scopus database

    2-s2.0-85195312711