All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F19%3A00503888" target="_blank" >RIV/67985823:_____/19:00503888 - isvavai.cz</a>

  • Alternative codes found

    RIV/60461373:22310/19:43919665

  • Result on the web

    <a href="https://doi.org/10.3390/nano9020164" target="_blank" >https://doi.org/10.3390/nano9020164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano9020164" target="_blank" >10.3390/nano9020164</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing

  • Original language description

    Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose, nanofibers, present particularly in electrospun matrices, and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    <a href="/en/project/GA17-00885S" target="_blank" >GA17-00885S: Nanostructured cellulose-based scaffolds with tunable properties for tissue engineering</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    39

  • Pages from-to

    164

  • UT code for WoS article

    000460806700033

  • EID of the result in the Scopus database

    2-s2.0-85061727120