All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Isolation and Characterization of Chitosans from Different Fungi with Special Emphasis on Zygomycetous Dimorphic Fungus Benjaminiella poitrasii: Evaluation of Its Chitosan Nanoparticles for the Inhibition of Human Pathogenic Fungi

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F22%3A00555996" target="_blank" >RIV/67985823:_____/22:00555996 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1021/acs.biomac.1c01248" target="_blank" >https://doi.org/10.1021/acs.biomac.1c01248</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.biomac.1c01248" target="_blank" >10.1021/acs.biomac.1c01248</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Isolation and Characterization of Chitosans from Different Fungi with Special Emphasis on Zygomycetous Dimorphic Fungus Benjaminiella poitrasii: Evaluation of Its Chitosan Nanoparticles for the Inhibition of Human Pathogenic Fungi

  • Original language description

    The cell wall chitosan was extracted from fungi belonging to different taxonomic classes, namely, Benjaminiella poitrasii (Zygomycetes, dimorphic), Hanseniaspora guilliermondii, Issatchenkia orientalis, Pichia membranifaciens, and Saccharomyces cerevisiae (Ascomycetes, yeasts), and Agaricus bisporus and Pleurotus sajor-caju (Basidiomycetes). The maximum yield of chitosan was 60.89 & PLUSMN, 2.30 mg/g of dry mycelial biomass of B. poitrasii. The degree of deacetylation (DDA) of chitosan extracted from different fungi, as observed with H-1 NMR, was in the range of 70-93%. B. poitrasii chitosan exhibited the highest DDA (92.78%). The characteristic absorption bands were observed at 3450, 1650, 1420, 1320, and 1035 cm(-1) by FTIR. Compared to chitosan from marine sources (molecular weight, MW, 585 kDa), fungal chitosans showed lower MW (6.21- 46.33 kDa). Further, to improve the efficacy of B. poitrasii chitosan (Bp), nanoparticles (Np) were synthesized using the ionic gelation method and characterized by dynamic light scattering (DLS). For yeast and hyphal chitosan nanoparticles (BpYCNp and BpHCNp), the average particle size was < 200 nm with polydispersity index of 0.341 & PLUSMN, 0.03 and 0.388 & PLUSMN, 0.002, respectively, and the zeta potential values were 21.64 & PLUSMN, 0.34 and 24.48 & PLUSMN, 1.58 mV, respectively. The B. poitrasii chitosans and their nanoparticles were further evaluated for antifungal activity against human pathogenic Candida albicans ATCC 10231, Candida glabrata NCYC 388, Candida tropicalis ATCC 750, Cryptococcus neoformans ATCC 34664, and Aspergillus niger ATCC 10578. BpHCNps showed lower MIC90 values (0.025-0.4 mg/mL) than the chitosan polymer against the tested human pathogens. The study suggested that nanoformulation of fungal chitosan, which has low molecular weight and high % DDA, is desirable for antifungal applications against human pathogens. Moreover, chitosans as well as their nanoparticles were found to be hemocompatible and are therefore safe for healthcare applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10606 - Microbiology

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Biomacromolecules

  • ISSN

    1525-7797

  • e-ISSN

    1526-4602

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    808-815

  • UT code for WoS article

    000745225000001

  • EID of the result in the Scopus database

    2-s2.0-85123910265