All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na+/H+ antiporter NHA2

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985823%3A_____%2F22%3A00564736" target="_blank" >RIV/67985823:_____/22:00564736 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/pro.4460" target="_blank" >https://doi.org/10.1002/pro.4460</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/pro.4460" target="_blank" >10.1002/pro.4460</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Allosteric links between the hydrophilic N-terminus and transmembrane core of human Na+/H+ antiporter NHA2

  • Original language description

    The human Na+/H+ antiporter NHA2 (SLC9B2) transports Na+ or Li+ across the plasma membrane in exchange for protons, and is implicated in various pathologies. It is a 537 amino acids protein with an 82 residues long hydrophilic cytoplasmic N-terminus followed by a transmembrane part comprising 14 transmembrane helices. We optimized the functional expression of HsNHA2 in the plasma membrane of a salt-sensitive Saccharomyces cerevisiae strain and characterized in vivo a set of mutated or truncated versions of HsNHA2 in terms of their substrate specificity, transport activity, localization, and protein stability. We identified a highly conserved proline 246, located in the core of the protein, as being crucial for ion selectivity. The replacement of P246 with serine or threonine resulted in antiporters with altered substrate specificity that were not only highly active at acidic pH 4.0 (like the native antiporter), but also at neutral pH. P246T/S versions also exhibited increased resistance to the HsNHA2-specific inhibitor phloretin. We experimentally proved that a putative salt bridge between E215 and R432 is important for antiporter function, but also structural integrity. Truncations of the first 50-70 residues of the N-terminus doubled the transport activity of HsNHA2, while changes in the charge at positions E47, E56, K57, or K58 decreased the antiporter's transport activity. Thus, the hydrophilic N-terminal part of the protein appears to allosterically auto-inhibit cation transport of HsNHA2. Our data also show this in vivo approach to be useful for a rapid screening of SNP's effect on HsNHA2 activity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/GA21-08985S" target="_blank" >GA21-08985S: Eukaryotic Na+/H+ antiporters – key elements in their structure determining activity, biogenesis and physiological functions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Protein Science

  • ISSN

    0961-8368

  • e-ISSN

    1469-896X

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    e4460

  • UT code for WoS article

    000884401200001

  • EID of the result in the Scopus database

    2-s2.0-85143088259