All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Intracellular sequestration of cadmium and zinc in ectomycorrhizal fungus Amanita muscaria (Agaricales, Amanitaceae) and characterization of its metallothionein gene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985831%3A_____%2F22%3A00558890" target="_blank" >RIV/67985831:_____/22:00558890 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389005:_____/22:00559796

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S1087184522000627" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1087184522000627</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fgb.2022.103717" target="_blank" >10.1016/j.fgb.2022.103717</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Intracellular sequestration of cadmium and zinc in ectomycorrhizal fungus Amanita muscaria (Agaricales, Amanitaceae) and characterization of its metallothionein gene

  • Original language description

    Amanita muscaria is an ectomycorrhizal mushroom that commonly grows at metal-polluted sites. Sporocarps from the lead smelter-polluted area near Příbram (Central Bohemia, Czech Republic) showed elevated concentrations of Cd and Zn. Size exclusion chromatography of the cell extracts of the sporocarps from both polluted and unpolluted sites indicated that substantial part of intracellular Cd and Zn was sequestered in 6-kDa complexes, presumably with metallothionein(s) (MT). When the cultured mycelial isolates were compared, those from Příbram were more Cd-tolerant and accumulated slightly less Cd and Zn than those from the unpolluted site. The analysis of the available A. muscaria sequence data returned a 67-amino acid (AA) MT encoded by the AmMT1 gene. Weak Cd and Zn responsiveness of AmMT1 in the mycelia suggested its metal homeostasis function in A. muscaria, rather than a major role in detoxification. The AmMT1 belongs to a ubiquitous peptide group in the Agaricomycetes consisting of 60–70-AA MTs containing seven cysteinyl domains and a conserved histidyl, features observed also in a newly predicted, atypical 45-AA RaMT1 of the Zn-accumulator Russula bresadolae in which the C-terminal cysteinyl domains VI and VII are missing. Heterologous expression in metal-sensitive yeast mutants indicated that AmMT1 and RaMT1 encode functional peptides that can protect cells against Cd, Zn, and Cu toxicity. The metal protection phenotype observed in yeasts with mutant variants of AmMT1 and RaMT1 further indicated that the conserved histidyl seems to play a structural, not metal binding role, and the cysteinyls of the C-terminal domains VI and VII are important for Cu binding. The data provide an important insight into the metal handling of site-associated ectomycorrhizal species disturbed by excess metals and the properties of MTs common in Agaricomycetes.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

    <a href="/en/project/GA19-06759S" target="_blank" >GA19-06759S: Cadmium hyperaccumulation in macrofungi: from isotopes to proteins and bacterial communities</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fungal Genetics and Biology

  • ISSN

    1087-1845

  • e-ISSN

    1096-0937

  • Volume of the periodical

    162

  • Issue of the periodical within the volume

    September 2022

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    103717

  • UT code for WoS article

    000830255600001

  • EID of the result in the Scopus database

    2-s2.0-85133246313