All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Forelli-Rudin Construction and Asymptotics of Weighted Bergman Kernels.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F00%3A05010024" target="_blank" >RIV/67985840:_____/00:05010024 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Forelli-Rudin Construction and Asymptotics of Weighted Bergman Kernels.

  • Original language description

    For a bounded pseudoconvex domain in the complex $n$-space with a smooth strictly plurisubharmonic defining function $f$, we prove that the Bergman kernels with respect to the weights $f^k$ have a certain asymptotic expansion as $k$ tends to infinity. Ifthe domain is strongly pseudoconvex with real-analytic boundary and $f$ is real-analytic, an analogous expansion is also obtained for the Berezin transform and applications are given to Berezin quantization.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA1019701" target="_blank" >IAA1019701: Function theory and operator theory in the Bergman space</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2000

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

  • Volume of the periodical

    177

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    25

  • Pages from-to

    257-281

  • UT code for WoS article

  • EID of the result in the Scopus database