All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The asymptotics of a Laplace integral on a Kähler manifold.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F00%3A05200110" target="_blank" >RIV/67985840:_____/00:05200110 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The asymptotics of a Laplace integral on a Kähler manifold.

  • Original language description

    We derive the asymptotic expansions for Laplace-type integrals on arbitrary Kähler manifolds. The coefficients of these expansions turn outto be covariant differential operators whose coefficients are universal expressions in the contravariant metric tensor, the curvature tensor, and its covariant derivatives. A similar asymptotic expansion is then obtained for the Berezin transform on a strongly pseudoconvex domain equipped with a Kähler metric possessing a global potential.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F96%2F0411" target="_blank" >GA201/96/0411: Applications of the function theory and Banach algebras methods to the operator theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2000

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal für die reine und angewandte Mathematik

  • ISSN

    0075-4102

  • e-ISSN

  • Volume of the periodical

    528

  • Issue of the periodical within the volume

    N/A

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    40

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database