The asymptotics of a Laplace integral on a Kähler manifold.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F00%3A05200110" target="_blank" >RIV/67985840:_____/00:05200110 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The asymptotics of a Laplace integral on a Kähler manifold.
Original language description
We derive the asymptotic expansions for Laplace-type integrals on arbitrary Kähler manifolds. The coefficients of these expansions turn outto be covariant differential operators whose coefficients are universal expressions in the contravariant metric tensor, the curvature tensor, and its covariant derivatives. A similar asymptotic expansion is then obtained for the Berezin transform on a strongly pseudoconvex domain equipped with a Kähler metric possessing a global potential.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F96%2F0411" target="_blank" >GA201/96/0411: Applications of the function theory and Banach algebras methods to the operator theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2000
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal für die reine und angewandte Mathematik
ISSN
0075-4102
e-ISSN
—
Volume of the periodical
528
Issue of the periodical within the volume
N/A
Country of publishing house
DE - GERMANY
Number of pages
40
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—