All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Higher Laplace–Beltrami operators on bounded symmetric domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00492739" target="_blank" >RIV/67985840:_____/18:00492739 - isvavai.cz</a>

  • Alternative codes found

    RIV/47813059:19610/18:A0000023

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10114-018-8162-y" target="_blank" >http://dx.doi.org/10.1007/s10114-018-8162-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10114-018-8162-y" target="_blank" >10.1007/s10114-018-8162-y</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Higher Laplace–Beltrami operators on bounded symmetric domains

  • Original language description

    It was conjectured by the first author and Peetre that the higher Laplace–Beltrami operators generate the whole ring of invariant operators on bounded symmetric domains. We give a proof of the conjecture for domains of rank ≤ 6 by using a graph manipulation of Kähler curvature tensor. We also compute higher order terms in the asymptotic expansions of the Bergman kernels and the Berezin transform on bounded symmetric domain.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Sinica-English Series

  • ISSN

    1439-8516

  • e-ISSN

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

    1297-1312

  • UT code for WoS article

    000441727900009

  • EID of the result in the Scopus database

    2-s2.0-85051601459