All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lipschitz Continuity of Polyhedral Skorokhod Maps.

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F00%3A05020023" target="_blank" >RIV/67985840:_____/00:05020023 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lipschitz Continuity of Polyhedral Skorokhod Maps.

  • Original language description

    We show that a special stability condition of the associated system of oblique projections (the so-called l-paracontractivity) guarantees that the corresponding polyhedral Skorokhod problem in a Hilbert space X is solvable in the space of absolutely continuous functions with values in X. If moreover the oblique projections are transversal, the solution in both spaces C ([O,T];X) and W1,1 (O,T;X). Also, an explicit upper bound for the Lipschitz constant is derived.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2000

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Zeitschrift für Analysis und ihre Anwendungen

  • ISSN

    0232-2064

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    28

  • Pages from-to

    817-844

  • UT code for WoS article

  • EID of the result in the Scopus database