Reliable solution of a torsion problem in Hencky plasticity with uncertain yield function.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F01%3A05025075" target="_blank" >RIV/67985840:_____/01:05025075 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Reliable solution of a torsion problem in Hencky plasticity with uncertain yield function.
Original language description
The worst scenario method is applied to the torsion problem of a homogeneous orthotropic elasto-plastic bar with uncertain yield function. According to the Haar-Kármán principle, the problem leads to a minimization of the complementary energy over a convex set of admissible stresses. The latter setis determined by a yield function with uncertain coefficients. We formulate two maximization problems with respect to the set of admissible coefficients, prove the solvability of the corresponding continuous and..
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F97%2F0217" target="_blank" >GA201/97/0217: Numerical analysis of nonlinear boundary value problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Models & Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
5
Country of publishing house
SG - SINGAPORE
Number of pages
11
Pages from-to
855-865
UT code for WoS article
—
EID of the result in the Scopus database
—