Colouring polytopic partitions in Rd.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F02%3A05020059" target="_blank" >RIV/67985840:_____/02:05020059 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Colouring polytopic partitions in Rd.
Original language description
We consider face-to-face partitions of bounded polytopes into convex polytopesin Rd for arbitrary d>1 and examine their colourability. In particular, we prove that the chromatic number of any simplicial partition does not exceed d+1.Partitions of poly
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1019201" target="_blank" >IAA1019201: The finite element method for three-dimensional problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica
ISSN
0862-7959
e-ISSN
—
Volume of the periodical
127
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
14
Pages from-to
251-264
UT code for WoS article
—
EID of the result in the Scopus database
—