An Application of Hindman.and.s Theorem to a Problem on Communication Complexity.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F03%3A05030140" target="_blank" >RIV/67985840:_____/03:05030140 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
An Application of Hindman.and.s Theorem to a Problem on Communication Complexity.
Original language description
We consider the k-party communication complexity of the problem of determiningif a word w is of the form ..........., for fixed letters....... . Using the well-known theorem of Hindman (a Ramsey-type result about finite subsets of natural numbers), we prove that for k = 4 and 5 the communication complexity of the problem increases with the length of the word w.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combinatorics, Probability and Computing
ISSN
0963-5483
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
N/A
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
661-670
UT code for WoS article
—
EID of the result in the Scopus database
—