All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Universal arrays

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F21%3A00547093" target="_blank" >RIV/67985807:_____/21:00547093 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.disc.2021.112626" target="_blank" >http://dx.doi.org/10.1016/j.disc.2021.112626</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.disc.2021.112626" target="_blank" >10.1016/j.disc.2021.112626</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Universal arrays

  • Original language description

    A word on q symbols is a sequence of letters from a fixed alphabet of size q. For an integer k⩾1, we say that a word w is k-universal if, given an arbitrary word of length k, one can obtain it by removing letters from w. It is easily seen that the minimum length of a k-universal word on q symbols is exactly qk. We prove that almost every word of size (1+o(1))cqk is k-universal with high probability, where c q is an explicit constant whose value is roughly q log⁡ q. Moreover, we show that the k-universality property for uniformly chosen words exhibits a sharp threshold. Finally, by extending techniques of Alon (2017) [1], we give asymptotically tight bounds for every higher dimensional analogue of this problem.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-08740S" target="_blank" >GA19-08740S: Embedding, Packing and Limits in Graphs</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete Mathematics

  • ISSN

    0012-365X

  • e-ISSN

    1872-681X

  • Volume of the periodical

    344

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    112626

  • UT code for WoS article

    000712876500027

  • EID of the result in the Scopus database

    2-s2.0-85115104242