All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Power from Random Strings

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F06%3A00038960" target="_blank" >RIV/67985840:_____/06:00038960 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Power from Random Strings

  • Original language description

    We show that sets consisting of strings of high Kolmogorov comlexity provide examples of sets that are complete for several complexity classes under probabilistic and nonuniform reductions. These sets are provably not complete under the usual many-one reductions. Let R_C be the set of strings x having comlexity at least |x|2, according to the usual Kolmogorov complexity measure C. We show that R_C is hard for the class of recursive functions under P/poly-truth-table reductions. Furthermore, we show thatEXP is included in NP^{R_C}and PSPACE is in P^{R_C}. We also study resource bounded versions of Kolmogorov complexity and we show tighter results for the hardness and completeness of the sets of Kolmogorov random strings with respect to these measures.

  • Czech name

    Síla náhodných řetízků

  • Czech description

    Zkoumáme výpočetní sílu množiny Kolmogorovsky náhodných řetízků při použití jako orákulum.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Siam Journal on Computing

  • ISSN

    0097-5397

  • e-ISSN

  • Volume of the periodical

    35

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    27

  • Pages from-to

    1467-1493

  • UT code for WoS article

  • EID of the result in the Scopus database