All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inverting Onto Functions and Polynomial Hierarchy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F07%3A00089758" target="_blank" >RIV/67985840:_____/07:00089758 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Inverting Onto Functions and Polynomial Hierarchy

  • Original language description

    The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? We give a relativized negative answer to this question by exhibiting an oracle under which TFNP functions are easy to compute but the polynomial-time hierarchy is infinite. To create the oracle, we introduce Kolmogorov-generic oracles where the strings placed in the oracle are derived from an exponentially long Kolmogorov-random string. We also show that relative to this same oracle, P is not equal to UP and TFNP functions with a SAT oracle are not computable in polynomial-time with a SAT oracle.

  • Czech name

    Invertování projektivních funkcí a polynomiální hierarchie

  • Czech description

    Zabýváme se otázkou, zda invertování funkcí, jejichž hodnota je polynomiálně verifikovatelná, jsou výpočetně těžké. Sestrojíme orákula, kde tomu tak není.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of International Computer Science Symposium in Russia, CSR 2007

  • ISBN

    978-3-540-74509-9

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    92-103

  • Publisher name

    Springer-Verlag

  • Place of publication

    Berlin

  • Event location

    Jekaterinburg

  • Event date

    Sep 3, 2007

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article