On the Moduli of Convexity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F07%3A00097576" target="_blank" >RIV/67985840:_____/07:00097576 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the Moduli of Convexity
Original language description
It is known that, given a Banach space (X,// . //), the modulus of convexity associated to this space .delta.x is a non-negative function, non-decreasing, bounded above by the modulus of convexity of any Hilbert space and satisfies the equation .........for every 0 < .xi. <.mu. < 2, where L > 0 is a constant. We show that, given a function f satisfying these properties then, there exists a Banach space in such a way its modulus of convexity is equivalent to f, in Figiel´s sense. Moreover this Banach space can be taken to be two-dimensional.
Czech name
O modulu convexity
Czech description
Pro libovolně zvolenou funkci modulu je ukázáno, že Hilbertův prostor je možno renormovat tak, aby tato funkce byla ekvivalentní modulu rotundity nové renormace. Důsledkem je též odhalení chyby v klasickém článku Asplunda z Acta Mathematica a řešení otázky Godefroy a Zizlera.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190502" target="_blank" >IAA100190502: The structure of Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
135
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
3233-3240
UT code for WoS article
—
EID of the result in the Scopus database
—