All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On singular solutions of linear functional differential equations with negative coefficients

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F08%3A00327206" target="_blank" >RIV/67985840:_____/08:00327206 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On singular solutions of linear functional differential equations with negative coefficients

  • Original language description

    The problem on solutions with specified growth for linear functional differential equations with negative coefficients is treated by using two-sided monotone iterations. New theorems on the existence and localisation of such solutions are established.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F06%2F0254" target="_blank" >GA201/06/0254: Functional differential equations in Banach spaces</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Inequalities and Applications

  • ISSN

    1025-5834

  • e-ISSN

  • Volume of the periodical

    2008

  • Issue of the periodical within the volume

    N

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000260688400001

  • EID of the result in the Scopus database