Some remarks on linear functional differential inequalities of hyperbolic type
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F08%3A00358235" target="_blank" >RIV/67985840:_____/08:00358235 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Some remarks on linear functional differential inequalities of hyperbolic type
Original language description
We prove that, for the validity of a certain theorem on differential inequalities for a linear functional differential equation of hyperbolic type partial derivative(2)u(t,x)/partial derivative t partial derivative x=l(i)(t,x)+q(t,x) with a negative linear operator I: C([a, b] x [c, d]; R) -> L([a, b] x [c, d]; R), it is necessary that l be an (a, c)-Volterra operator.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0254" target="_blank" >GA201/06/0254: Functional differential equations in Banach spaces</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Ukrainian Mathematical Journal
ISSN
0041-5995
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
000261841500012
EID of the result in the Scopus database
—