On symmetric digraphs of the congruence xk = y(mod n)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00323492" target="_blank" >RIV/67985840:_____/09:00323492 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On symmetric digraphs of the congruence xk = y(mod n)
Original language description
We assign to each pair of positive integers n and k > 2 a digraph G (n,k) whose set of vertices is H = (0,1, ...,n-1) and for which there is a directed edge from a .. H to b .. H if ak= b (mod n). The digraph G(n,k) is symmetric of order M if its set ofcomponents can be partitioned into subsets of size M with each subset containing M isomorphic components. We generalize earlier theorems by Szalay, Carlip, and Mincheva on symmetric digraphs G(n,2) of order 2 to symmetric digraphs G(n,k) of order M whenk > 2 is arbitrary
Czech name
O symetrických orientovaných grafech kongruence xk = y (mod n)
Czech description
V článku zobecňujeme některá známá tvrzení pro kvadratické kongruence, které odpovídají symetrickým orientovaným grafům, na případ k > 2.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
309
Issue of the periodical within the volume
10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
—
UT code for WoS article
000265176000008
EID of the result in the Scopus database
—