Power digraphs modulo n are symmetric of order M in and only if M is square free
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00380313" target="_blank" >RIV/67985840:_____/12:00380313 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Power digraphs modulo n are symmetric of order M in and only if M is square free
Original language description
We assign to each pair of positive integers k>=2 and n a digraph G(n,k) whose set of vertices is H = {0, 1, . . . , n 1} and for which there is a directed edge from a H to b H if ak = b (mod n). The digraph G(n, k) is symmetric of order M if its set of components can be partitioned into disjoint subsets, each containing exactly M isomorphic components. Deng and Yuan completely characterized all symmetric digraphs of order M when M = 2 or M is divisible by an odd prime. We demonstrate that their classification is complete by showing that there are no symmetric digraphs G(n, k) of order 2s for s >= 2.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190803" target="_blank" >IAA100190803: The finite element method for higher dimensional problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
196-206
UT code for WoS article
—
EID of the result in the Scopus database
—