A boundary value problem for the spherically symmetric motion of a pressureless gas with a temperature-dependent viscosity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00333120" target="_blank" >RIV/67985840:_____/09:00333120 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A boundary value problem for the spherically symmetric motion of a pressureless gas with a temperature-dependent viscosity
Original language description
We consider an initial-boundary value problem for the equations of spherically symmetric motion of a pressureless gas with temperature-dependent viscosity mu(theta) and conductivity kappa(theta). We prove that this problem admits a unique weak solution,assuming Belov's functional relation between mu(theta) and kappa(theta) and we give the behaviour of the solution for large times.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0012" target="_blank" >GA201/08/0012: Qualitative analysis and numerical solution of flow problems</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
16
Country of publishing house
GB - UNITED KINGDOM
Number of pages
29
Pages from-to
—
UT code for WoS article
000271405600003
EID of the result in the Scopus database
—