All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Abelian groups and quadratic residues in weak arithmetic

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00343145" target="_blank" >RIV/67985840:_____/10:00343145 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Abelian groups and quadratic residues in weak arithmetic

  • Original language description

    We investigate the provability of some properties of abelian groups and quadratic residues in variants of bounded arithmetic. Specifically, we show that the structure theorem for finite abelian groups is provable in S22 + iWPHP( b1), and use it to deriveFermat?s little theorem and Euler?s criterion for the Legendre symbol in S22 + iWPHP(PV )extended by the pigeonhole principle PHP(PV ). We prove the quadratic reciprocity theorem (including the supplementary laws) in the arithmetic theories T02 +Count2(PV ) and I 0 + Count2( 0) with modulo-2 counting principles.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Logic Quarterly

  • ISSN

    0942-5616

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000278949200003

  • EID of the result in the Scopus database