Abelian groups and quadratic residues in weak arithmetic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00343145" target="_blank" >RIV/67985840:_____/10:00343145 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Abelian groups and quadratic residues in weak arithmetic
Original language description
We investigate the provability of some properties of abelian groups and quadratic residues in variants of bounded arithmetic. Specifically, we show that the structure theorem for finite abelian groups is provable in S22 + iWPHP( b1), and use it to deriveFermat?s little theorem and Euler?s criterion for the Legendre symbol in S22 + iWPHP(PV )extended by the pigeonhole principle PHP(PV ). We prove the quadratic reciprocity theorem (including the supplementary laws) in the arithmetic theories T02 +Count2(PV ) and I 0 + Count2( 0) with modulo-2 counting principles.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Logic Quarterly
ISSN
0942-5616
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
—
UT code for WoS article
000278949200003
EID of the result in the Scopus database
—