On the weak pigeonhole principle.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F01%3A05025079" target="_blank" >RIV/67985840:_____/01:05025079 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the weak pigeonhole principle.
Original language description
We investigate the proof complexity, in (existensions of) resolution and in bounded arithmetic, of the weak pigeonhole principle and of Ramsey theorem in particular, we link the proof complexity of these two principles.Further we give lower bounds to thewidth of resolution proofs and to the size of (extensions of) tree-like resolution proofs of Ramsey theorem. We establish a connection between provability of WPHP in fragments of bounded arithmetic and cryptographic assumptions (the existence of one-way....
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1019901" target="_blank" >IAA1019901: Mathematical logic and computational complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2001
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fundamenta mathematicae
ISSN
0016-2736
e-ISSN
—
Volume of the periodical
170
Issue of the periodical within the volume
1-3
Country of publishing house
PL - POLAND
Number of pages
18
Pages from-to
123-140
UT code for WoS article
—
EID of the result in the Scopus database
—