All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A note on propositional proof complexity of some Ramsey-type statements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00369652" target="_blank" >RIV/67985840:_____/11:00369652 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00153-010-0212-9" target="_blank" >http://dx.doi.org/10.1007/s00153-010-0212-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00153-010-0212-9" target="_blank" >10.1007/s00153-010-0212-9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A note on propositional proof complexity of some Ramsey-type statements

  • Original language description

    A Ramsey statement denoted n -> (k)(2)(2) says that every undirected graph on n vertices contains either a clique or an independent set of size k. Any such valid statement can be encoded into a valid DNF formulaRAM(n, k) of size O(n(k)) and with terms ofsize ((k)(2)). Let r(k) be the minimal n for which the statement holds. We prove that RAM(r(k), k) requires exponential size constant depth Frege systems, answering a problem of Krishnamurthy and Moll [15]. As a consequence of Pudlak's work in bounded arithmetic [19] it is known that there are quasi-polynomial size constant depth Frege proofs of RAM(4(k), k), but the proof complexity of these formulas in resolution R or in its extension R(log) is unknown. We define two relativizations of the Ramsey statement that still have quasi-polynomial size constant depth Frege proofs but for which we establish exponential lower bound for R.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Archive for Mathematical Logic

  • ISSN

    1432-0665

  • e-ISSN

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    11

  • Pages from-to

    245-255

  • UT code for WoS article

    000286668400014

  • EID of the result in the Scopus database