A partially strong solution to the steady Navier-Stokes equations for compressible barotropic fluid with generalized impermeability boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00349654" target="_blank" >RIV/67985840:_____/10:00349654 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A partially strong solution to the steady Navier-Stokes equations for compressible barotropic fluid with generalized impermeability boundary conditions
Original language description
We prove the existence of a partially strong solution to the steady Navier-Stokes equations for barotropic compressible fluid in a bounded simply connected domain with the prescribed generalized impermeability conditions u.n=0, curl u.n=0 and curl curl u.n=0 on the boundary. We assume that the state law for the pressure has the form P(rho)=rho^{gamma} for gamma>3. We call the solution "partially strong" because only the divergence - free part of velocity and the effective pressure have regularity typical for strong solutions, while the gradient part of velocity and the density have regularity typical for weak solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0012" target="_blank" >GA201/08/0012: Qualitative analysis and numerical solution of flow problems</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinearity
ISSN
0951-7715
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
20
Pages from-to
—
UT code for WoS article
000284379300005
EID of the result in the Scopus database
—