All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Asymptotic properties of solutions to the equations of incompressible fluid mechanics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00353467" target="_blank" >RIV/67985840:_____/10:00353467 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Asymptotic properties of solutions to the equations of incompressible fluid mechanics

  • Original language description

    Well-accepted hypothesis in the fluid dynamics is that if the boundary of the physical domain is impermeable then the vsiscous fluid adheres completely to it. Many authors recently proposed mathematical justifications for this hypothesis using the so-called rugous boundary. In this paper we want to discuss optimality of results obtained in Bucur et al., Bucur and Feireisl or Díaz et al. and we show several corresponding examples. Finally, we extend these results for more general domains.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0315" target="_blank" >GA201/08/0315: Mathematical analysis of complex systems in fluid mechanics</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    000285929600004

  • EID of the result in the Scopus database