The motion of a rigid body and a viscous fluid in a bounded domain in presence of collisions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00487359" target="_blank" >RIV/67985840:_____/18:00487359 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.15406/fmrij.2018.02.00014" target="_blank" >http://dx.doi.org/10.15406/fmrij.2018.02.00014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15406/fmrij.2018.02.00014" target="_blank" >10.15406/fmrij.2018.02.00014</a>
Alternative languages
Result language
angličtina
Original language name
The motion of a rigid body and a viscous fluid in a bounded domain in presence of collisions
Original language description
We consider the motion of a rigid body in a bounded domain filled by viscous incompressible fluid. The fluid is described by the Navier-Stokes equations. We assume the Navier condition on the boundary of the body and the Dirichlet condition on the boundary of the domain. We give the global-in-time solvability result of the weak solution. The result allows a possibility of collisions of the body with the boundary of the domain.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fluid Mechanics Research International Journal
ISSN
2577-8242
e-ISSN
—
Volume of the periodical
2
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
4
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—