On the Salas Theorem and Hypercyclicity of f(T)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00373153" target="_blank" >RIV/67985840:_____/10:00373153 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00020-010-1791-x" target="_blank" >http://dx.doi.org/10.1007/s00020-010-1791-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00020-010-1791-x" target="_blank" >10.1007/s00020-010-1791-x</a>
Alternative languages
Result language
angličtina
Original language name
On the Salas Theorem and Hypercyclicity of f(T)
Original language description
We study hypercyclicity properties of functions of Banach space operators. Generalizations of the results of Herzog-Schmoeger and Bermudez-Miller are obtained. As a corollary we also show that each non-trivial operator commuting with a generalized backward shift is supercyclic. This gives a positive answer to a conjecture of Godefroy and Shapiro. Furthermore, we show that the norm-closures of the set of all hypercyclic (mixing, chaotic, frequently hypercyclic, respectively) operators on a Hilbert spacecoincide. This implies that the set of all hypercyclic operators that do not satisfy the hypercyclicity criterion is rather small-of first category (in the norm-closure of hypercyclic operators).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0473" target="_blank" >GA201/09/0473: Methods of function theory and Banach algebras in operator theory IV</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Integral Equations and Operator Theory
ISSN
0378-620X
e-ISSN
—
Volume of the periodical
67
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
439-448
UT code for WoS article
000279210600007
EID of the result in the Scopus database
—