Spectral analysis of a Stokes-type operator arising from flow around a rotating body
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00357503" target="_blank" >RIV/67985840:_____/11:00357503 - isvavai.cz</a>
Alternative codes found
RIV/67985840:_____/11:00375617 RIV/67985840:_____/11:00391070
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Spectral analysis of a Stokes-type operator arising from flow around a rotating body
Original language description
We consider the spectrum of the Stokes operator with and without rotation effect for the whole space and exterior domains in L-q-spaces. Based on similar results for the Dirichlet-Laplacian on R-n, n >= 2, we prove in the whole space case that the spectrum as a set in C does not change with q is an element of (1, infinity), but it changes its type from the residual to the continuous or to the point spectrum with q. The results for exterior domains are less complete, but the spectrum of the Stokes operator with rotation mainly is an essential one, consisting of infinitely many equidistant parallel half lines in the left complex half plane. The tools are strongly based on Fourier analysis in the whole space case and on stability properties of the essential spectrum for exterior domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the Mathematical Society of Japan
ISSN
0025-5645
e-ISSN
—
Volume of the periodical
63
Issue of the periodical within the volume
1
Country of publishing house
JP - JAPAN
Number of pages
32
Pages from-to
—
UT code for WoS article
000287060600005
EID of the result in the Scopus database
—