Strong solutions to the Stokes equations of a flow around a rotating body in weighted Lq spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00364305" target="_blank" >RIV/67985840:_____/11:00364305 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.200810166" target="_blank" >http://dx.doi.org/10.1002/mana.200810166</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.200810166" target="_blank" >10.1002/mana.200810166</a>
Alternative languages
Result language
angličtina
Original language name
Strong solutions to the Stokes equations of a flow around a rotating body in weighted Lq spaces
Original language description
We consider the motion of a fluid in the exterior of a rotating obstacle. This leads to a modified version of the Stokes system which we consider in the whole space R(n), n = 2 or n = 3 and in an exterior domain D subset of R(3). For every q is an element of (1, infinity) we prove existence of solutions and estimates in function spaces with weights taken from a subclass of the Muckenhoupt class A(q). Moreover, uniqueness is shown modulo a vector space of dimension 3.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
284
Issue of the periodical within the volume
13
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
1701-1714
UT code for WoS article
000294325100008
EID of the result in the Scopus database
—