A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00360085" target="_blank" >RIV/67985840:_____/11:00360085 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jde.2011.02.010" target="_blank" >http://dx.doi.org/10.1016/j.jde.2011.02.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2011.02.010" target="_blank" >10.1016/j.jde.2011.02.010</a>
Alternative languages
Result language
angličtina
Original language name
A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity
Original language description
In this paper, we prove the existence and global boundedness from above for a solution to an integro-differential model for nonisothermal multi-phase transitions under nonhomogeneous third type boundary conditions. The system couples a quasilinear internal energy balance ruling the evolution of the absolute temperature with a vectorial integro-differential inclusion governing the (vectorial) phase-parameter dynamics. The specific heat and the heat conductivity k are allowed to depend both on the order parameter ? and on the absolute temperature ? of the system, and the convex component of the free energy may or may not be singular. Uniqueness and continuous data dependence are also proved under additional assumptions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F2315" target="_blank" >GAP201/10/2315: Mathematical modeling of Processes in Hysteretic Materials</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Volume of the periodical
251
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
34
Pages from-to
1354-1387
UT code for WoS article
000291900800024
EID of the result in the Scopus database
—