Convergence of the Neumann series in BEM for the Neumann problem of the stokes system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00367466" target="_blank" >RIV/67985840:_____/11:00367466 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10440-011-9643-5" target="_blank" >http://dx.doi.org/10.1007/s10440-011-9643-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10440-011-9643-5" target="_blank" >10.1007/s10440-011-9643-5</a>
Alternative languages
Result language
angličtina
Original language name
Convergence of the Neumann series in BEM for the Neumann problem of the stokes system
Original language description
A weak solution of the Neumann problem for the Stokes system in Sobolev space is studied in a bounded Lipschitz domain with connected boundary. A solution is looked for in the form of a hydrodynamical single layer potential. It leads to an integral equation on the boundary of the domain. Necessary and sufficient conditions for the solvability of the problem are given. Moreover, it is shown that we can obtain a solution of this integral equation using the successive approximation method. Then the consequences for the direct boundary integral equation method are treated. A solution of the Neumann problem for the Stokes system is the sum of the hydrodynamical single layer potential corresponding to the boundary condition and the hydrodynamical double layer potential corresponding to the trace of the velocity part of the solution. Using boundary behavior of potentials we get an integral equation on the boundary of the domain where the trace of the velocity part of the solution is unknown.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190804" target="_blank" >IAA100190804: The motion of rigid bodies in liquid: mathematical analysis, numerical simulation and related problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Applicandae Mathematicae
ISSN
0167-8019
e-ISSN
—
Volume of the periodical
116
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
24
Pages from-to
281-304
UT code for WoS article
000300084300004
EID of the result in the Scopus database
—