All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convergence of the Neumann series in BEM for the Neumann problem of the stokes system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00367466" target="_blank" >RIV/67985840:_____/11:00367466 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10440-011-9643-5" target="_blank" >http://dx.doi.org/10.1007/s10440-011-9643-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10440-011-9643-5" target="_blank" >10.1007/s10440-011-9643-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convergence of the Neumann series in BEM for the Neumann problem of the stokes system

  • Original language description

    A weak solution of the Neumann problem for the Stokes system in Sobolev space is studied in a bounded Lipschitz domain with connected boundary. A solution is looked for in the form of a hydrodynamical single layer potential. It leads to an integral equation on the boundary of the domain. Necessary and sufficient conditions for the solvability of the problem are given. Moreover, it is shown that we can obtain a solution of this integral equation using the successive approximation method. Then the consequences for the direct boundary integral equation method are treated. A solution of the Neumann problem for the Stokes system is the sum of the hydrodynamical single layer potential corresponding to the boundary condition and the hydrodynamical double layer potential corresponding to the trace of the velocity part of the solution. Using boundary behavior of potentials we get an integral equation on the boundary of the domain where the trace of the velocity part of the solution is unknown.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA100190804" target="_blank" >IAA100190804: The motion of rigid bodies in liquid: mathematical analysis, numerical simulation and related problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Applicandae Mathematicae

  • ISSN

    0167-8019

  • e-ISSN

  • Volume of the periodical

    116

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    24

  • Pages from-to

    281-304

  • UT code for WoS article

    000300084300004

  • EID of the result in the Scopus database