Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00367487" target="_blank" >RIV/67985840:_____/11:00367487 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00211-011-0384-1" target="_blank" >http://dx.doi.org/10.1007/s00211-011-0384-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-011-0384-1" target="_blank" >10.1007/s00211-011-0384-1</a>
Alternative languages
Result language
angličtina
Original language name
Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems
Original language description
A procedure for the construction of robust, upper bounds for the error in the finite element approximation of singularly perturbed reaction?diffusion problems was presented in Ainsworth and Babuška (SIAM J Numer Anal 36(2):331?353, 1999) which entailed the solution of an infinite dimensional local boundary value problem. It is not possible to solve this problem exactly and this fact was recognised in the above work where it was indicated that the limitation would be addressed in a subsequent article. Weview the present work as fulfilling that promise and as completing the investigation begun in Ainsworth and Babuška (SIAM J Numer Anal 36(2):331?353, 1999) by removing the obligation to solve a local problem exactly. The resulting new estimator is indeed fully computable and the first to provide fully computable, robust upper bounds in the setting of singularly perturbed problems discretised by the finite element method.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Volume of the periodical
119
Issue of the periodical within the volume
2
Country of publishing house
DE - GERMANY
Number of pages
25
Pages from-to
219-243
UT code for WoS article
000297164000001
EID of the result in the Scopus database
—