Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00431616" target="_blank" >RIV/67985840:_____/14:00431616 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.cma.2014.08.005" target="_blank" >http://dx.doi.org/10.1016/j.cma.2014.08.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2014.08.005" target="_blank" >10.1016/j.cma.2014.08.005</a>
Alternative languages
Result language
angličtina
Original language name
Robust error bounds for finite element approximation of reaction-diffusion problems with non-constant reaction coefficient in arbitrary space dimension
Original language description
We present a fully computable a posteriori error estimator for piecewise linear finite element approximations of reaction-diffusion problems with mixed boundary conditions and piecewise constant reaction coefficient formulated in arbitrary dimension. Theestimator provides a guaranteed upper bound on the energy norm of the error and it is robust for all values of the reaction coefficient, including the singularly perturbed case. The approach is based on robustly equilibrated boundary flux functions of Ainsworth and Oden (2000) and on subsequent robust and explicit flux reconstruction. This paper simplifies and extends the applicability of the previous result of Ainsworth and Vejchodsky (2011) in three aspects: (i) arbitrary dimension, (ii) mixed boundary conditions, and (iii) non-constant reaction coefficient. It is the first robust upper bound on the error with these properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computer Methods in Applied Mechanics and Engineering
ISSN
0045-7825
e-ISSN
—
Volume of the periodical
281
Issue of the periodical within the volume
November 2014
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
184-199
UT code for WoS article
000343841400008
EID of the result in the Scopus database
—