Second order linear q-difference equations: nonoscillation and asymptotics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00368875" target="_blank" >RIV/67985840:_____/11:00368875 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14410/11:00050562
Result on the web
<a href="http://dx.doi.org/10.1007/s10587-011-0051-9" target="_blank" >http://dx.doi.org/10.1007/s10587-011-0051-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-011-0051-9" target="_blank" >10.1007/s10587-011-0051-9</a>
Alternative languages
Result language
angličtina
Original language name
Second order linear q-difference equations: nonoscillation and asymptotics
Original language description
The paper can be undestood as a completion of the q-Karamata theory along with a related discussion on the asymptotic behavior of solutions to the linear q-difference equations. The q-Karamata theory was recently introduced as the theory of regularly varying like functions on the lattice qNo:={qk:k N0] with q>1. In addition to recalling the existing concepts of q-regular variation and q-rapid variation we introduce q-regularly bounded functions and prove many related properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
61
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
28
Pages from-to
1107-1134
UT code for WoS article
000299705600019
EID of the result in the Scopus database
—