Periodic solutions of singular second order differential equations : upper and lower functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00370679" target="_blank" >RIV/67985840:_____/11:00370679 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.na.2011.07.029" target="_blank" >http://dx.doi.org/10.1016/j.na.2011.07.029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2011.07.029" target="_blank" >10.1016/j.na.2011.07.029</a>
Alternative languages
Result language
angličtina
Original language name
Periodic solutions of singular second order differential equations : upper and lower functions
Original language description
In this paper, we continue the study of the periodic problem for the second-order equation u '' + f (u)u' + g(u) = h(t, u), where h is a Caratheodory function and f, g are continuous functions on (0,+ infinity) which may have singularities at zero. Bothattractive and repulsive singularities are considered. The method relies on a novel technique of construction of lower and upper functions. As an application, we obtain new sufficient conditions for the existence of periodic solutions to the Rayleigh-Plesset equation.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
74
Issue of the periodical within the volume
18
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
7078-7093
UT code for WoS article
000295714200023
EID of the result in the Scopus database
—