Forcing properties of ideals of closed sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00371062" target="_blank" >RIV/67985840:_____/11:00371062 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Forcing properties of ideals of closed sets
Original language description
With every sigma-ideal I on a Polish space we associate the sigma-ideal I* generated by the closed sets in I. We study the forcing notions of Borel sets modulo the respective sigma-ideals I and I* and find connections between their forcing properties. Tothis end, we associate to a sigma-ideal on a Polish space an ideal on a countable set and show how forcing properties of the forcing depend on combinatorial properties of the ideal. We also study the I-I or constant property of sigma-ideals. i.e., the property that every Borel function defined on a Borel positive set can be restricted to a positive Borel set on which it either 1-1 or constant. We prove the following dichotomy: if I is a sigma-ideal generated by closed sets, then either the forcing P(I)adds a Cohen real, or else I has the 1-1 or constant property.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190902" target="_blank" >IAA100190902: Mathematical logic, complexity, and algorithms</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Symbolic Logic
ISSN
0022-4812
e-ISSN
—
Volume of the periodical
76
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
1075-1095
UT code for WoS article
000294791900017
EID of the result in the Scopus database
—