F-sigma equivalence relations and Laver forcing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00433873" target="_blank" >RIV/67985840:_____/14:00433873 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/jsl.2013.32" target="_blank" >http://dx.doi.org/10.1017/jsl.2013.32</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jsl.2013.32" target="_blank" >10.1017/jsl.2013.32</a>
Alternative languages
Result language
angličtina
Original language name
F-sigma equivalence relations and Laver forcing
Original language description
Following the topic of the book Canonical Ramsey Theory on Polish Spaces by V. Kanovei, M. Sabok, and J. Zapletal we study Borel equivalences on Laver trees. We prove that equivalence relations Borel reducible to an equivalence relation on 2(omega) givenby some F-sigma P-ideal on omega can be canonized to the full equivalence relation or to the identity relation. This has several consequences, e.g., Silver type dichotomy for the Laver ideal and equivalences Borel reducible to equivalence relations given by F-sigma P-ideals.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190902" target="_blank" >IAA100190902: Mathematical logic, complexity, and algorithms</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Symbolic Logic
ISSN
0022-4812
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
644-653
UT code for WoS article
000339939900013
EID of the result in the Scopus database
—