Mathias-Prikry and Laver type forcing; Summable ideals, coideals, and +-selective filters
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F16%3A00458990" target="_blank" >RIV/67985840:_____/16:00458990 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00153-016-0476-9" target="_blank" >http://dx.doi.org/10.1007/s00153-016-0476-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00153-016-0476-9" target="_blank" >10.1007/s00153-016-0476-9</a>
Alternative languages
Result language
angličtina
Original language name
Mathias-Prikry and Laver type forcing; Summable ideals, coideals, and +-selective filters
Original language description
We study the Mathias–Prikry and the Laver type forcings associated with filters and coideals. We isolate a crucial combinatorial property of Mathias reals, and prove that Mathias–Prikry forcings with summable ideals are all mutually bi-embeddable. We show that Mathias forcing associated with the complement of an analytic ideal always adds a dominating real. We also characterize filters for which the associated Mathias–Prikry forcing does not add eventually different reals, and show that they are countably generated provided they are Borel. We give a characterization of omega-hitting and omega-splitting families which retain their property in the extension by a Laver type forcing associated with a coideal.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GF15-34700L" target="_blank" >GF15-34700L: The continuum, forcing and large cardinals</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
493-504
UT code for WoS article
000374969600010
EID of the result in the Scopus database
2-s2.0-84964684012