All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Singular limits of the equations of magnetohydrodynamics

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00373149" target="_blank" >RIV/67985840:_____/11:00373149 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00021-009-0007-0" target="_blank" >http://dx.doi.org/10.1007/s00021-009-0007-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-009-0007-0" target="_blank" >10.1007/s00021-009-0007-0</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Singular limits of the equations of magnetohydrodynamics

  • Original language description

    This paper studies the asymptotic limit for solutions to the equations of magnetohydrodynamics, specifically, the Navier-Stokes-Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behavior of the magnetic field, when Mach number and Alfv,n number tends to zero. The introduced system is considered on a bounded spatial domain in R(3), supplemented with conservative boundary conditions. Convergence towards the incompressible system of the equations of magnetohydrodynamics is shown.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LC06052" target="_blank" >LC06052: The Nečas Center for Mathematical Modeling</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    17

  • Pages from-to

    173-189

  • UT code for WoS article

    000291359300002

  • EID of the result in the Scopus database