Location of bifurcation points for a reaction-diffusion system with Neumann-Signorini conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00373154" target="_blank" >RIV/67985840:_____/11:00373154 - isvavai.cz</a>
Alternative codes found
RIV/60076658:12310/11:43881913
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Location of bifurcation points for a reaction-diffusion system with Neumann-Signorini conditions
Original language description
We consider a reaction-diffusion system of activator-inhibitor or substrate-depletion type in one space dimension which is subject to diffusion-driven instability. We determine the change of bifurcation when a pure Neumann condition is supplemented witha Signorini condition. We show that this change differs essentially from the known case when also Dirichlet conditions are assumed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190805" target="_blank" >IAA100190805: Bifurcation and parameter dependence for unilateral boundary value problems and interpretation in natural sciences</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Nonlinear Studies
ISSN
1536-1365
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
809-836
UT code for WoS article
000296073100003
EID of the result in the Scopus database
—