On certain asymptotic class of solutions to second-order linear q-diference equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00372060" target="_blank" >RIV/67985840:_____/12:00372060 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/1751-8113/45/5/055202" target="_blank" >http://dx.doi.org/10.1088/1751-8113/45/5/055202</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8113/45/5/055202" target="_blank" >10.1088/1751-8113/45/5/055202</a>
Alternative languages
Result language
angličtina
Original language name
On certain asymptotic class of solutions to second-order linear q-diference equations
Original language description
The paper deals with the linear second order $q$-difference equation $y(q^2t)+a(t)y(qt)+b(t)y(t)=0$, $b(t)ne 0$, considered on ${q^k:kinN_0}$, $q>1$. The class of functions satisfying the relation $y(qt)/y(t)simomega(t)$ as $ttoinfty$ for some function $omega$ is introduced and studied. Sufficient and necessary conditions are established for the equation to have solutions in this class. Related results concerning estimates for solutions and (non)oscillation of all solutions are discussed. A comparison with existing results is made and some applications are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
5
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
055202
UT code for WoS article
000300259500007
EID of the result in the Scopus database
—