Asymptotic Behavior of Solutions to Half-Linear q-Difference Equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00357377" target="_blank" >RIV/67985840:_____/11:00357377 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14410/11:00050561
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asymptotic Behavior of Solutions to Half-Linear q-Difference Equations
Original language description
We derive necessary and sufficient conditions for (some or all) positive solutions of the halflinear q-difference equation D-q(Phi(D(q)y(t))) + p(t)Phi(y(qt)) = 0, t is an element of {q(k) : k is an element of N-0} with q > 1, Phi(u) = vertical bar u vertical bar(alpha-1) sgn u with alpha > 1, to behave like q-regularly varying or q-rapidly varying or q-regularly bounded functions (that is, the functions y, for which a special limit behavior of y(qt)/y(t) as t -> infinity is prescribed). A thorough discussion on such an asymptotic behavior of solutions is provided. Related Kneser type criteria are presented.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Abstract and Applied Analysis
ISSN
1085-3375
e-ISSN
—
Volume of the periodical
-
Issue of the periodical within the volume
—
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
—
UT code for WoS article
000286231600001
EID of the result in the Scopus database
—