Polynomials and identities on real Banach spaces
Result description
We study the duality theory for real polynomials and functions on Banach spaces. Our approach leads to a unified treatment and generalization of some classical results on linear identities and polynomial characterizations due to Frechet, Mazur, Orlicz, Reznick, Wilson, and others.
Keywords
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Polynomials and identities on real Banach spaces
Original language description
We study the duality theory for real polynomials and functions on Banach spaces. Our approach leads to a unified treatment and generalization of some classical results on linear identities and polynomial characterizations due to Frechet, Mazur, Orlicz, Reznick, Wilson, and others.
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
385
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1015-1026
UT code for WoS article
000295062600034
EID of the result in the Scopus database
—
Basic information
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BA - General mathematics
Year of implementation
2012