On a five-dimensional version of the Goldberg?Sachs theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00380306" target="_blank" >RIV/67985840:_____/12:00380306 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1088/0264-9381/29/20/205002" target="_blank" >http://dx.doi.org/10.1088/0264-9381/29/20/205002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0264-9381/29/20/205002" target="_blank" >10.1088/0264-9381/29/20/205002</a>
Alternative languages
Result language
angličtina
Original language name
On a five-dimensional version of the Goldberg?Sachs theorem
Original language description
Previous work has found a higher dimensional generalization of the geodesic part? of the Goldberg?Sachs theorem. We investigate the generalization of the shear-free part? of the theorem. A spacetime is defined to be algebraically special if it admits a multiple Weyl aligned null direction (WAND). The algebraically special property restricts the form of the optical matrix? that defines the expansion, rotation and shear of themultipleWAND. After working out some general constraints that hold in arbitrarydimensions, we determine necessary algebraic conditions on the optical matrix of a multiple WAND in a five-dimensional Einstein spacetime. We prove that one can choose an orthonormal basis to bring the 3 3 optical matrix to one of three canonical forms,each involving two parameters, and we discuss the existence of an optical structure? within these classes. Examples of solutions corresponding to each form are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP203%2F10%2F0749" target="_blank" >GAP203/10/0749: General relativity in higher dimensions</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
20
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
—
UT code for WoS article
000309050500003
EID of the result in the Scopus database
—