The ubiquity of conservative translations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00384231" target="_blank" >RIV/67985840:_____/12:00384231 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1017/S1755020312000226" target="_blank" >http://dx.doi.org/10.1017/S1755020312000226</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1755020312000226" target="_blank" >10.1017/S1755020312000226</a>
Alternative languages
Result language
angličtina
Original language name
The ubiquity of conservative translations
Original language description
We study the notion of conservative translation between logics introduced by Feitosa and D'Ottaviano. We show that classical propositional logic (CPC) is universal in the sense that every finitary consequence relation over a countable set of formulas canbe conservatively translated into CPC. The translation is computable if the consequence relation is decidable. More generally, we show that one can take instead of CPC a broad class of logics (extensions of a certain fragment of full Lambek calculus (FL) including most nonclassical logics studied in the literature, hence in a sense, (almost) any two reasonable deductive systems can be conservatively translated into each other. We also provide some counterexamples, in particular the paraconsistent logicLP is not universal.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Review of Symbolic Logic
ISSN
1755-0203
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
666-678
UT code for WoS article
000311684800006
EID of the result in the Scopus database
—