Covering an uncountable square by countable many continuous functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00387008" target="_blank" >RIV/67985840:_____/12:00387008 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/S0002-9939-2012-11292-4" target="_blank" >http://dx.doi.org/10.1090/S0002-9939-2012-11292-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/S0002-9939-2012-11292-4" target="_blank" >10.1090/S0002-9939-2012-11292-4</a>
Alternative languages
Result language
angličtina
Original language name
Covering an uncountable square by countable many continuous functions
Original language description
We prove that there exists a countable family of continuous real functions whose graphs, together with their inverses, cover an uncountable square, i.e. a set of the form X X, where X is uncountable. This extends Sierpiński's theorem from 1919, saying that S S can be covered by countably many graphs of functions and inverses of functions if and only if |S| <= ? 1. Using forcing and absoluteness arguments, we also prove the existence of countably many 1-Lipschitz functions on the Cantor set endowed withthe standard non-archimedean metric that cover an uncountable square.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190901" target="_blank" >IAA100190901: Topological and geometric structures in Banach spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
140
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
4359-4368
UT code for WoS article
000312117500033
EID of the result in the Scopus database
—